Complex $\Gamma$-convergence and magnetic Dirichlet Laplacian in bounded thin tubes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Singular Operator Limits of Thin Dirichlet Tubes via Γ-convergence

The Γ-convergence of lower bounded quadratic forms is used to study the singular operator limit of thin tubes (i.e., the vanishing of the cross section diameter) of the Laplace operator with Dirichlet boundary conditions; a procedure to obtain the effective Schrödinger operator (in different subspaces) is proposed, generalizing recent results in case of compact tubes. Finally, after scaling cur...

متن کامل

Asymptotics of Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Domains in R

We consider the Laplace operator with Dirichlet boundary conditions on a domain in R and study the effect that performing a scaling in one direction has on the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This generalizes our previous results in two dimensions and, as in that case, allows us to obtain an approximation for Dirichlet eigenvalues...

متن کامل

Fractional Laplacian in bounded domains.

The fractional Laplacian operator -(-delta)(alpha/2) appears in a wide class of physical systems, including Lévy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely, hopping ...

متن کامل

Singular Asymptotic Expansions for Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Planar Domains

We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for the first Dirichl...

متن کامل

Two-term Spectral Asymptotics for the Dirichlet Laplacian on a Bounded Domain

Let −∆ denote the Dirichlet Laplace operator on a bounded open set in Rd. We study the sum of the negative eigenvalues of the operator −h∆− 1 in the semiclassical limit h → 0+. We give a new proof that yields not only the first term of the asymptotic formula but also the second term involving the surface area of the boundary of the set. The proof is valid under weak smoothness assumptions on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2014

ISSN: 1664-039X

DOI: 10.4171/jst/81